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Abstract 

We develop a general theory of ‘quantum’ diffeomorphism groups based on the universal comea- 
suring quantum group M(A) associated to an algebra A, and its various quotients. Explicit formulae 
are introduced for this construction, as well as dual quasi-triangular and braided R-matrix versions. 
Among the examples, we construct the q-diffeomorphisms of the quantum plane yx = qxy, and 
recover the quantum matrices M4 (2) as q-diffeomorphisms respecting its braided group addition 
law. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In [I] one finds a standard construction for a measuring coalgebra M(A, B) as a universal 
object for coalgebras ‘acting’ form algebras A to B. The diagonal case M(A, A) is a 
bialgebra. The construction is the analogue of the classical automorphism group except 
now as the universal or ‘maximal’ object in the category of bialgebras rather than of groups. 
Until now, however, this measuring bialgebra construction has been little studied in the 
modern quantum groups literature, although see [2,3]. Probably the main reason for this 
is the lack of explicit formulae: being defined as a universal object it is generally hard to 
compute. 
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In the present paper we develop a much more explicit and computable version of this 
construction, namely a bialgebra M(A) defined directly by the structure constants of an 
associative algebra A, which we call the ‘comeasuring bialgebra’. It is the arrows-reversed 
version of the standard construction but, by contrast, is defined by the generators and rela- 
tions in a familiar way. It has many applications and, in fact, a quasi-quantum group version 
is used in our forthcoming paper [4] with H. Albuquerque as a definition of the automor- 
phism object of quasi-associative algebras such as the octonions. By contrast, here we study 
in much more detail the strictly associative setting and its ‘geometrical’ applications. We 
also generalise the construction to the general braided case, where A is an algebra in a 
braided category such as that associated to a Yang-Baxter matrix. Such algebras abound in 
the theory of q-deformations as the ‘geometrical objects’ on which quantum groups act as 
symmetries. 

The automorphism object M(A) clearly plays the role of ‘diffeomorphisms’ in a non- 
commutative geometry setting (where an algebra A is viewed as like the ‘functions’ on 
some space). This is our point of view, and we will use the corresponding terminology 
throughout the paper. We also consider briefly quotients of M(A) that preserve a given dif- 
ferential structure on A, but for the most part we work with the universal differential calculus 
canonically associated to an algebra. Also, we use the terms‘quantum group’ and ‘braided 
group’ a little loosely, without requiring the existence of an antipode or ‘group inversion’. 
In examples, the restricted comeasuring bialgebras MO(A) will often have an antipode or 
will admit one by adjoining inverse determinants etc. Within these limitations, we pro- 
vide a general approach to quantum diffeomorphisms which includes q-diffeomorphisms 
of the line (i.e. some version of a q-Virasoro quantum group) and of the quantum plane, 
as well as of finite-dimensional algebras. Our approach is further justified by showing 
that elements of ‘quantum geometry’ may be built around these objects, along the lines 
of [5,6]. The notion of quantum diffeomorphism group should be viewed as a step to- 
wards the notion of ‘quantum manifold’, which is a long-term motivation for the present 
work. 

An outline is the following. In the preliminary Section 2 we formulate the arrows- 
reversed measuring bialgebra construction and obtain explicit formulae for it and its natural 
quotients. Apart from the forthcoming paper [4] in the quasi-associative setting, these 
formulae appear to be new. In Section 3 we compute several examples of comeasuring 
algebras, exploring their role as ‘quantum diffeomorphisms’ of polynomial and discrete 
spaces. Section 3.7 contains the maximal comeasuring bialgebra of the quantum plane, 
while Section 3.8 obtains the 2 x 2 quantum matrices M*(2) as the q-diffeomorphisms 
respecting addition. Note that this result is somewhat different from the characterisation of 
quantum matrices in [7], which is based on a certain construction of ‘endomorphisms’ 
for quadratic algebras and their duals. There are some points of contact, however. In 
Section 4 we turn to general R-matrix constructions. We give a dual quasi-triangular version 
M( R, A) of the comeasuring construction, including the applications to the line and the 
quantum plane. Also using R-matrices in this section are braided group versions of our 
constructions. 



96 S. Majid/Journul of Geometry and Physics 28 (1998) 94-128 

2. General constructions 

The abstract definition of the comeasuring bialgebra is obtained from [l] by reversing 
arrows, giving a universal comeasuring algebra M( A, B) ‘coacting’ from algebras A to B . 
Here the arrows of the coacted-upon objects A, B are not reversed, i.e. we leave these as 
algebras and do not make them into coalgebras as a full dualisation would do. Also, we 
concentrate on the diagonal case M(A) = M(A, A) since we will not have much to say 
about the general non-diagonal case. Their formulation is, however, strictly analogous. We 
work over a general field k. 

Thus, by definition, a comeasuring of a unital algebra A is a pair (B, p) where B is a unital 
algebra and /3 : A + A 63 B is an algebra map to the tensor product algebra. We define 
(M(A), ~Ju), when it exists, to be the initial object in the category of comeasurings of A, i.e. 
a comeasuring such that for any (B, /I) there exists a unique algebra map n : M(A) += B 
such that /3 = (id 63 n)fi~. 

Proposition 2.1 (cf. [I]). M(A), when it exists, is a biulgebru and /?u is a couction of it 
on A us un algebra. Any other couction of a biulgebru on A us an algebra is a quotient of 
this one. 

ProojI This is elementary. We note that M(A)@M(A), (j?rl_ @id)o& is also acomeasuring. 
Hence there is an algebra map A : M(A) + M(A) 63 M(A) and (/J-J ~3 id) o /$J = 
(id 8 A) o Bu. It remains to show that A is coassociative. For this, consider M(A)@3, 
(/Ju @id ~3 id) o (/lo ~3 id) o fiu as another comeasuring. The map n : M(A) + M(A)@’ 
in this case is such that (id 63 n) o /?u is the comeasuring map associated to M(A)@‘. Both 
(A 63 id) o A and (id 8 A) o A clearly fulfill the role of n, and since rr is unique, these maps 
coincide. Finally, k, B(u) = a @ 1 is a comeasuring and E : M(A) + k is the induced map. 
It is easy to see that it provides a counit. Given any other coaction of a bialgebra B on A 
as an algebra (i.e A a B-comodule algebra), the fact that B comeasures gives the required 
map rc : M(A) --f B. 0 

When A is nonunital, we can follow the same definitions while omitting the conditions 
that B is unitial and that /I, n respect the unit. In this case it is clear that the universal 
object M(A) is a not-necessarily unital bialgebra. We call it the ‘nonunital version’ of the 
comeasuring bialgebra. We can, however, always formally adjoin a unit to it, extending 
A,~byA(l)=l~l~d~(l)=l.WedenotethisextensionbyM~(A). 

Suppose now that A is finite-dimensional and let {ei ) be a basis. We let eiej = Cijkek 

define its structure constants. 

Proposition 2.2. A41 (A) is generated by 1 and a matrix t = (t’j) of generators, with 
relations and coproduct 

Cijatk, = Cabktaitbj, At’j = tin @ taj, E(tij) = Jij. 

The map &(ei) = e, @ ta i is the couction. 
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Prooj It is easy to verify that A extends as an algebra map and that bu is a coaction. For 
the former, the proof is 

(This is also a special case of the quasi-Hopf algebra construction in [4] or of the braided 
case in Section 4). Now, let (B, #I) be a comeasuring and define n(tij) E B by B(ei) = 
e, 63 n(t”i). Then B is an algebra map is the assertion that Cij”TL(tk,) = cabkn(t”i)n(th,j), 
i.e. n : M(A) + B defined in this way extends as an algebra map. Thus M(A) as generated 
by the tij has the required universal property. When we adjoin 1, we obtain MI (A) as 
stated. 0 

Note that the explicit proof that A provides a bialgebra works similarly for any tensor 
cir ...irnjl...jfl of rank (m, n), i.e. one has an associated bialgebra with the matrix coalgebra 
and the relations 

Cal . ..a., 
iI ,,.i, 

t 
al am j,“‘t ~~ = +I in a,“.t a,Cjl...jm 

(I, “a, (1) 

The associated bialgebra may, however, be trivial. In our case the associativity of A, which 
is the equation Cij’Cak’ = CialCjka, is needed for the interpretation as universal comeasuring 
object. It also tends to ensure that the ideal generated by the stated relations is not too big. 
Specifically, 

holds automatically in Ml (A). 
Now suppose that A is unital and ec = 1 is a basis element. We let ei , i = 1, . . , dim(A) - 

1 be the remaining basis elements. 

Proposition 2.3. The comeasuring bialgebra M(A) is the quotient of Ml (A) by tog = 1, 
tie = 0. Explicitly, it has the relations 

c. .atk - Cabktaitbj + bitkj + tkibj, rj a- 

cij” + cij“ba = Cab”taitbj + bibj 

and coproduct, coaction 

At’j = tia ~ taj, Abi = ba @ tai + 1 8 bi, 

E(t’j) = 6’j, C(bi) = 0 

Bu(ei) = 1 8 bi + e, 8 tai, 

where bi = toi 
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Proo$ Here ton - 1, tiu generates a biideal of Mt (A) and hence provides a quotient bial- 
gebra. For a direct proof that A as stated extends to products as an algebra map, we have 

Acijatka = Cijatkb @ tba 

= C,bctkc 8 taitbj + tkc @ bitCj + tkc @ tCibj 

= c,dktc,tdb @ t”itbj + batkb @ taitbj 

f tk,bb @ taitbj + tkc @ bit’j + tkc @ tCibj 

= A(cabktaitbj + bitkj + tkibj) 

using the relations and coproduct stated for M(A). Similarly, 

= 1 8 Cab”taitbj + 1 @ bibj + b, @ cijbtab 

= cij’l @ 1 + Cij’l @ b, + cijbba @ tab 

= A(cijO + cij’b,) 

for the second set of relations. The coproduct has a standard form which is clearly coassocia- 
tive, hence we obtain a bialgebra. It inherits the coaction as shown. Conversely, suppose that 
B, Bisacomeasuringandletn(bi),n(t’j) E Bdefinedbyp(ei) = l@Z(bi)+e,@n(t’i). 
Similarly to the nonunital case, it follows from #I a unital algebra map that n extends as a 
unital algebra map and p = (id 8 n) o j3u by construction. 0 

Note that these constructions are independent of the choice of basis (beyond the choice 
ec = 1 in the unital case) because they are abstractly defined. In a new basis ei = e, Aai, 
the generators of Mt (A) are 

t’i, _ A-liatabAb. 
J- I' (2) 

In the unital case we require that the transformation is of the form e; = eo and ei = 
& + e, Aai where the indices on h, A run from 1, . . . , dim(A) - 1. Then the transformed 
generators of M(A) are 

b’i = b,A’i + hi - ~bn-‘b,tcdndi, tti. = A-liatabAb, 
J J’ 

If we are given slightly more structure, namely a linear splitting A = 1 G3 A’ then we can 
define a restricted comeasuring bialgebra MO(A) as the universal object for comeasurings 
that respect the splitting, i.e. such that B(A’) c A’ @I B in addition to /I(l) = 1 as before. 

Proposition 2.4. MO(A) is the quotient of M(A) by bi = 0, i.e. it is the associative algebra 
generated by I, t’j where i, j = 1, . . . , dim(A) - 1, and the relations 

cij ak ka b t a = cab t it j, c. .O = 
‘J 

c a bOta .tb. 
’ J 

and matrix coalgebra. Its coaction is /QJ (ei) = e, @ t’i. 
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Pro06 We suppose that a splitting A = 1 @ A’ is given and {ei } are a basis of A’. We clearly 
have a biideal of M(A) generated by the bi and hence a quotient bialgebra. It inherits the 
relations and coaction shown. Conversely, if (B, /?) is a comeasuring preserving A’, we 
define n(t’i) E B by /?(ei) = e, 8 n(t’i) and n(l) = 1. 0 

This depends on the basis only through the splitting of 1 defined by it, i.e. is independent of 
the basis of A’ (one may take transformations as above with h = 0). In summary, associated 
to a split unital algebra A, we have a sequence of bialgebras 

MI(A) --f M(A) --, MO(A), 

where M(A) is the ‘usual’ definition dual to the construction in [ 11, respecting the unit but 
not its splitting, Mt (A) is the unital extension of the nonunital version, and MO(A) is the 
version respecting the unit and in addition its splitting. 

We have similar formulae for Mt (A, B), M(A, B), Mo(A, B) as algebras of ‘maps’ be- 
tween algebras. For example, if B has structure constants &~BY in basis {fol}, then Ml (A, B) 
is generated by 1 and a rectangular matrix {?‘a} of generators with relations 

Similarly for its quotients. Also, although we have assumed finite bases for our explicit 
formulae, similar formulae hold more generally with countable basis. In this case one may 
have to work formally or, more precisely, with a suitable completion of tensor products. In 
this respect, the original measuring (rather than comeasuring) construction in [l] is better 
behaved. On the other hand, we have the advantage in the dual formulation of explicit 
formulae as algebras with generators and relations. 

3. Quantum diffeomorphisms of polynomial algebras 

We now compute the comeasuring bialgebras for polynomials C[x] and their quotients, 
and justify their role as ‘diffeomorphisms’. Further justification is in Section 3.6 where we 
consider the preservation of nonuniversal differential calculi; for the moment the underlying 
calculus is the universal one canonically associated to the algebra. In the case of @[xl, the 
full comeasuring bialgebras Ml (@[xl) and M(C[x]) require formal powerseries and are 
included for motivation only, but Mo(@[x]) is a completely algebraic object. 

Clearly, the algebraic version of a diffeomorphisms C[x] -+ C[x] is a polynomial map 
x I+ a(x) = uo + atx + a&X2 +. . . , i.e. a polynomial. If we compose two such diffeo- 
morphisms a, b, then 

U 0 b(X) = xU(Xj)bj = c c xnl+“‘+Hju,, . . . u,jbj 
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where i, j, n 1 E if+, etc. Here H+ denotes the natural numbers including 0. On the other 
hand, there is not necessarily a polynomial inverse. Therefore the ‘coordinate ring’ of the 
semigroup of such diffeomorphisms is the commutative bialgebra Diff(@[x]) = C[ri Ii E 
H+] with countable generators ti and the coaction 

Xl-+ Xi @ti (4) 

as a formal power series. The corresponding coproduct and counit is 

Ati = C C trill “.tnj @tj, E(ti) = 6i.l (5) 

j nl +,..+nj=i 

and also involves powerseries. On the other hand, if we restrict attention to diffeomorphisms 
which preserve the point zero in the line, we consider only polynomials a(x) = a 1 x fa2x2 + 
. . . , i.e. without constant term. This restricted diffeomorphism bialgebra is the commutative 
bialgebra Diffe(@[x]) = @[ti Ii E N] with the same formulae as above but with i, j, nl E N 
etc. Here N denotes the natural numbers not including 0. In this case (5) has only a finite 
number of terms. Thus the algebraic diffeomorphism fixing 0 form a bialgebra with algebraic 
coalgebra structure and countable generators. 

3. I. Comeasurings of the line 

We now apply the constructions in Section 2, and recover (noncommutative) versions 
of the above diffeomorphism bialgebras as M(@[x]) and Mo(@[x]), respectively. Thus, we 
take A = C[x] and basis eu = 1 and ei = xi for i E N. Then the structure constants are 

c..k = Jk ‘J [+.I’ Cij” = 0 (6) 

and the comeasuring bialgebra M(A) from Proposition 2.3 has generators 1, bi and tij with 
relations 

bi+j = bibj, tki+j = C tnit”j + bitkj + tkibj 
m+n=k 

(7) 

for all indices in N. These relations allow is to consider to s bl and ti z til as the 
generators, obtaining the other bi, tij inductively as 

tij = C tnl”‘tnj, bi = (to)i (8) 

for i, j E N and n 1 . . . nj E Z+. In this case relations (7) become empty, so M(@[x]) = 
@(ti Ii E H+), the free algebra on countable generators. Its coproduct and coaction from 
Proposition 2.3 therefore takes the form (5) and (4) with all indices from Z+, i.e. M(C[x]) 
has the same form as Diff (@[xl) except that the generators ti are totally noncommuting. 

The restricted comeasuring bialgebra Mc(C[x]) is the quotient of this where we set to=O. 
Equivalently, working from Proposition 2.4, it has generators tij for i, j E N with relations 

(9) 
m+n=k 
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where all indices are in N. As before, this implies 

tij = 
c t ?I, *. . tn, Y (10) 

nl+,..+n,=i 

where,ti s tit andnowtheni,... , nj E N. This implies in particular that fij = 0 for 
j > i, which ensures that the matrix coproduct is now a finite sum of terms. In this way, 
Mc(C[x]) = C(ti Ii E N), the free algebra, with coproduct (5) and coaction (4) where all 
indices are in N. Thus, Mo(C[x]) has the same form as Diffo(C[x]) except that its generators 
are totally noncommuting. 

Finally, the extended comeasuring bialgebra MI (C[x]) has no classical analogue (since 
usual diffeomorphisms preserve the constant function 1 E C[x]). From Proposition 2.2 it is 
generated by 1 and fij, where i, j E Z+ and relations (9) (but now with all indices in Z+). 
This time we can reduce the matrix generators to two sequences Ei E tia and ti SE t’ 1 for 
i E Z+. The others are recovered by (8) where now i, n 1 E Z+ etc., and j E N. In this way 
we find that Ml (C[x]) is generated by 1, Ei, ti for i E Z +, with the residual relations and 
coalgebra 

c E,E, = Ei, C E,tn = ti = C tmE,z, 
m--n+ m+n=i m+rl=i 

AEi = C C tn, “‘tn, @ Ej, 
j nl+...+n,=i 

Ati = C C tn, . ‘. tn, @ tj 
j nl+..,+n,=i 

and E(E~) = 6’0, E(Q) = 6’1, where all indices are from Z+. We note that the constrained 
sums in these expressions are the usual convolution product * on sequences, and in that 
notation the relations and coproduct of Mt (C[x]) are 

E*E=E, E*t=t=t*E, 

AE;=C(t*...*t)i~Ej, Ati = C(t * . . . * t>i g tj, 
.i j 

where the *-products are j-fold. Finally, the coaction is 

l++Cxi@Ei, XHCXi@ti. 

i i 

The M(C[x]) above is the quotient of this non-unit-preserving diffeomorphism group by 
setting Ei = S”o. 

3.2. Comeasurings of Grassmann and anyonic variables 

Here we consider ‘diffeomorphisms’ of the finite-dimensional quotients A = Qx]/xN = 
0. The case N = 2 is where x is a fermionic or ‘Grassmann’ variable. The case N > 2 is an 
anyonic variable. The addition law and geometry of this ‘anyonic line’ can be found in [8]. 
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We take basis ei = xi where i = 1, . . . , N - 1 and eo = 1. Then Cijk have the same 
form(6)butrestrictedinrangetoO < i,j,k c N.InthiscaseM=@(ti ]i =O,...,N-I) 
is the free algebra and has coproduct (5) with indices including 0. The restricted comeasuring 
bialgebra is the free algebra Mu = C (ti 1 i = 1, . . . , N - 1) with coproduct likewise from (5) 

but with all indices now excluding 0. On the other hand the comeasuring bialgebra is now 
finitely generated and does not need any formal powerseries. (One can then obtain M(@[x]) 
in the projective limit N + co.) 

For the fermionic case x2 = 0, the comeasuring bialgebra is M = C(b, t) with 

Ab = 1 @I b + b @ t, At = t @t, e(b) = 0, e(t) = 1, 

i.e. the matrix of generators has the form 

The restricted comeasuring bialgebra is just MO = @[t] with At = t 631 t and c(t) = 1. The 
extended comeasuring bialgebra 441 is generated by 1 and 

with the relations 

a2 =a, ac + ca = c, ab = b = ba, ad+cb=d=da+bc 

and the usual matrix coalgebra. 
For an anyonic variable with x3 = 0, the comeasuring bialgebra is A4 = C(b, t, s) with 

Ab=1@b+bbt+b2@ss, At = t 8 t + (bt + tb) @s, 

As = s 63 t + (t2 + sb + bs) @s, e(b) = E(S) = 0, e(t) = 1, (11) 

i.e. the matrix of generators takes the form 

1 b 

0 t 

0 s t2+sb+bs 

The restricted comeasuring bialgebra is MO = C(t, s) with 

At=t@t, As=s@t+t2~s, e(t)=l, e(s)=O, 

i.e. the matrix of generators take the form 

(12) 

t 0 ( > s t2 . 
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3.3. Comeasurings of roots of unity 

For another class of discrete spaces (which we consider as discrete models of a circle), 
we consider the algebra A = CB,v = C[x]/x ’ = 1. We take basis eo = 1 and ei = xi as 
before, with 

Cij" = 6i._j, 

where 0 -C i, j, k < N are added modulo N. One may put these into Propositions 2.2-2.4 
to obtain the comeasuring bialgebras. 

Actually, it is easier in this class of examples to compute Mt first and then quotient it. This 
has generators 1, tij with relations (9), where i, j E i2~ including zero. The convolution 
formula (8) now applies for all (i, j) since ZN is a group, so generators may all be written 
in terms of tj c ti 1 for i E if,. In particular, 

Ei z tiO = C tn, . ..tn.sq, 
?I+-+nhl=i 

where all indices are in ZN. Thus, the extended comeasuring bialgebra Mr is generated by 
1, ti for i E ZN with the relations 

c t 11, . . ’ tnN+I = tj vi E ZN 
nl+...+nN+I=i 

and coproduct (5) with all indices in ZN. 
The comeasuring algebra M is given by setting Ei = 6’0. Hence it is generated by 1, ti 

for i E ZN modulo the relations 

c t n, . . . tnhr = 6’0 vi E ZN 
n,+...+nN=i 

and the same form of coproduct. Here 

bi Zt”j = C tp,l.“tn,, ti,j = C tn,“‘tn, 
nl+-~+n,=O nl+...+nJ=i 

fori,j = l,..., N - 1 and ni E ZN, etc., provide the generators in the form of Proposi- 
tion 2.3. 

Finally, the restricted comeasuring bialgebra MO is given by setting bi = 0. Hence MO 

is generated by 1, ti where i = 1, . . , N - 1 modulo the relations 

c t n, . . .tnn, = 1, c t,, . ..t., =o, 
nl+.-+n,v=O n, f-+nfq=i 

c tn, ..*tn, =o 
,I,+.-+n,=o 

fori,nt,etc.,areintherangel,..., N - 1 and addition modulo ??N. The coproduct is (5) 
with all indices similarly in this range. 
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For x2 = 1, the extended comeasuring bialgebra Ml is generated by 1, b, t modulo the 
relations and coalgebra 

(b f t)3 = (b f t), At = t 8 t + (bt -t- tb) 8 b, 

Ab = (b* + t2) c3 b + b ~3 t, c(t) = 1, c(b) = 0. 
(131 

The matrix of generators has the form 

(:I:2 :). 

The comeasuring bialgebra M is obtained by setting b2 + t2 = 1, bt + tb = 0 and is 
therefore generated by 1, b, t modulo the stronger relations and coalgebra 

(b f t>2 = 1, At=t@t, 

Ab=l@b+b@t, c(t) = 1, c(b) = 0. (14) 

Although not a Hopf algebra, there is a formal antipode 

St = -L bt 

1 -b2’ 
Sb=-- 

1 -b2 

as a powerseries in b. The restricted comeasuring bialgebra is just MO = @[t]/t2 = 1 and 
At = t %I t, c(t) = 1, and is a Hopf algebra with St = t. 

For x3 = 1, the comeasuring bialgebra M is generated by 1, b, t, s modulo the relations 

ba+ty+s/3=1, tcz+ssy+b/I=O, m+bby+@=O, 

where 

cx=b2+ts+st, /3=s2+bt+tb, yrt2+sb+bs. 

The coalgebra is 

Ab=lc3b+bc3t++crss, At=t@t++@s, 

As=s@t++yss, E(b) =c(s) =o, c(t) = 1, 

i.e. the matrix of generators has the form 

The extended 441 is similar with weaker relations. Finally, the restricted Mu is generated 
by 1, t, s with the relations and coproduct 

ts + st = 0, t3+s3 = 1, t2s = ts2 = 0, 
At=t@t+s*@s, As=s@t+t*@s (13 



S. Majid/.loumal of Geometry and Physics 28 (1998) 94-128 105 

and e(t) = 1, E(S) = 0, i.e. the matrix of generators has the form 

t s2 ( > s t2 . 

The second relation is equivalent to (t + s)~ = 1 given the others. 
Similarly, one may compute the measuring bialgebra for k,~ = k [h]/m (h) = 0 for general 

fields and general polynomials m. When m is manic and irreducible, ki is a field extension 
of k and M(kk) should be viewed as the ‘quantum Galois group’ for the field extension. 
Also, we are not limited to commutative algebras and fields. The comeasuring bialgebras 
for the complex numbers and the quatemions, as algebras of dimension 2,4, respectively, 
over R are computed in [4] as preludes to the octonion case. In the quatemion case one 
has a noncommutative and noncommutative bialgebra projecting into the coordinate ring of 
SO3. There are of course plenty of other interesting examples according to one’s favourite 
algebra. 

3.4. Comeasurings ofjinite sets 

For completeness, we conclude our collection of general classes of examples with the case 
A = c(Z) where E is a finite set. In this case we compute only Ml (c(Z)) and M(C(E)) 
since there is no particularly natural splitting of the identity without more structure. We take 
basis (e; = Si , i E .E}, the delta-functions at elements in the set. The structure constants are 

c. .k = 6. .s’i 
‘J ‘.J J (16) 

and hence we find from Section 2 that Ml (c(Z)) is generated by 1 and rij (say) with 
relations 

tkitkj = Gi,jtki (17) 

(no sum) and the matrix coalgebra structure. This means for each row k the matrix of gen- 
erators forms an orthogonal family of projectors, i.e. a copy of c(C), while there are no 
relations between the different rows. During the final writing of this paper we learned that 
such algebras have also been considered in [3] in an interesting C*-algebra setting, again as 
some kind of universal automorphism objects for finite sets. In our case we obtain them as 
an elementary example of the general (but algebraic) construction in Proposition 2.2 dual 
to [l]. We also have a unit 1 = xi Si and the corresponding M(C(E)) can be computed 
as follows. We take a different basis ec = 1 and {ei ( i E C - *} where * is a basepoint (a 
fixed element of E). Then M(C(C)) is generated by tij, bi with i, j E E - * and relations 

tkitkj + bitkj + tkibj = Sijtkj, bibj = Sijbj (18) 

and the coalgebra in Proposition 2.3. We see that M(C(Z)) > C(Z) embedded as (1, bi]. 
Note that if we want to describe M(@(Z)) in our original basepoint-free delta-function 
basis, it consists of the quotient of (17) by the relations 

c Tij = 1, (19) 
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where i, j E .X. This is equivalent to (18) via 

tij=tij+bj, to0 = 1 - Cbi, 

toi = bi, tiO = 1 - C tij - C bj (20) 

j j 

for i, j E Z - *, which is the transformation induced by the change between the two bases. 
We note that the algebras A = @[xl/x N = 1 are isomorphic by Fourier transform to 

c(&v), so their comeasuring bialgebras are isomorphic to those for a finite set with N 
elements. Explicitly, 

N-l 

tij = N-1 
c 

e(2ni/N)(mi-nj)tm 
n (21) 

m,n=O 

is the matrix of projectors (17) generating A41 (C(Z)) in terms of the matrix generators of 
A41 for @l/x N = 1 in Section 3.3. For example, for N = 2 the matrix of projectors is 

1 
’ = 2 ( 

(b + t)2 + (b + t) (b + t)2 - (b + t) 

(b - t)2 + (b - t) (b - t)2 - (b - t) > ’ 
(22) 

That the elements of each row are orthogonal projectors is equivalent to the relations (b h 

t)3 = (b f t) in (13). For the quotient M@(Z)) we obtain 

> ’ 
gk = $1 f (b f t)) (23) 

i.e. the algebra generated by two projectors g* and the coalgebra 

Ag~=g~~ggi+(l-g~)~(l-g,), E&i) = 1 (24) 

as isomorphic to M for Q-xl/x2 = 1 in the preceding section, This is the basepoint-free de- 
scription via (17) and (19). On the other hand, if we compute M(@(Z)) from Proposition 2.3 
according to (18) (which is in a different basis) we have an equivalent matrix of generators 

/+ = 1 - g+ = $1 - (b + t)), z’=g--1+g+=t 

obeying 

zb2 =c b, (ct +z b)2 =c t +c b, 

Acb=l@zb+cb@zt. Azt=zt@zt 

and e(zt) = 1, r(cb) = 0. 

3.5. Elements of quantum geometry 

In the remaining two sections we consider briefly some steps towards a ‘differential ge- 
ometry’ based on these ‘quantum diffeomorphisms’. We essentially use the quantum group 
approach to noncommutative geometry in [5] and especially the recent paper [6]. We recall 



S. Majid/Jownal of Geometry and Physics 28 (1998) 94-128 107 

that in the classical situation, of Z: is a manifold one has, roughly speaking, an identifi- 
cation Diff(C)/Diff,(E) Z E providing a principal bundle over E with structure group 
Diff*(E). The canonical projection sends a diffeomorphism n to CJ (*) E E. Moreover, 
this principal bundle has, again formally, a canonical form 0 making this a frame resolution 
of Z in the language of [6]. The usual affine frame bundle and linear frame bundle are 
subbundles. Here 8 is the projection to T* .E = R" of the Maurer-Cartan form on Diff( E), 
where the Lie algebra of vector fields on Z: modulo those that vanish at * is identified with 
the value at *. Using the canonical form 0, we have essentially a correspondence between 
gauge-fields on this principal bundle and covariant derivatives on the cotangent bundle of C. 
In this way, differential geometry on the manifold may be developed strictly as Diff,(C) 
gauge theory. Of course, because these are large infinite-dimensional groups, one needs 
topological considerations to make these ideas fully precise in the manifold setting. On the 
other hand, in our algebraic setting we can try to keep everything algebraic, e.g. if the role 
of our manifold is played by a finite-dimensional (possibly noncommutative) algebra. We 
have seen above that for polynomials, M(C[x]) plays the role of ‘diffeomorphisms’ and 
Mo(C[x]) plays the role of diffeomorphisms fixing the origin. Motivated by these ideas we 
make the parallel choice for our finite-dimensional algebras. 

To recall the set-up, note that arrows are reversed in our co-ordinate ring formulation. 
Thus, a homogeneous quantum principal bundle [5] arises from a Hopf algebra map 7r : 
M + MO between Hopf algebras M, MO (say) such that the induced coaction AL = 
(n @J id)A : M + MO @ M has fixed point subalgebra A = MM0 = {h E M 1 Ar,h = 
1 ~3 h) (it plays the role of the coordinates of the base manifold), and obeying a certain 
nondegeneracy condition (the ‘Hopf-Galois’ condition) that the map 

x:M@AM-+Mo@M, h @g + A~(h)g 

is invertible. There is a canonical form 8 : V -+ Sz ' M given by [6] 

v = kerC]A, 19 = (id @ S)A 

in terms of the Hopf algebra structure of M. Here n ’ M c M ~3 M is the kernel of the 
product map (the universal differential calculus). A connection on the quantum bundle 
is a map w : MO + S2'M which is left Ad- covariant and obeys x o w = id ~3 1 on 
ker E c MO and w (1) = 0 as in [5], and in the presence of 19 it defines a covariant derivative 
V:52’A+4’A@AJ-2’AX?2AcA@A@Aby 

V da = da @ 1 - U(I) @ Sa(2)da(3)k(4) 

-a(l) 8 SU(2) 8 a(3) + 1 CQ 1 8 a, 

where d : A -+ Sz ’ A given by da = a C3 1 - 1 @ a is the exterior derivative and 
Au = u(l) @ ~(2) etc., is a notation for the coproduct, see [6]. 

As a first step towards applying this formalism, we consider the case where 22 is a two- 
point set. We take M(@(C)) in its basepoint form (18), namely generated by projectors 
p sx b +C t and q EC b with no further relations and the coalgebra 

Ap=p@p+(l-p)@q, Aq=(l-q)@q+q@p, 

E(P) = I, E(q) = 1. 
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Similarly, Mo(@(Z)) = @[p]/p2 = p with Ap = 3 @3 p and EP = 1. The projection is 
n(p) = p and x(q) = 0. The induced coaction is 

ALq=lCGq, &p=P@‘+(l-P)@qq. 

Since M is spanned by 1 and alternating words h = pqpq .. f or h = qpqp . . ., one can 
show that 

d~l = l@ 1, Ad=P@h+(l-j9C+q 

for either kind of nontrivial h. Hence the fixed point subalgebra is the subalgebra spanned 
by 1, q, i.e. 

M(C(~))Mo’c”c)) = C(E). 

One can also reach a similar conclusion 

M(C[X])~~(@‘~‘) = a=[~], 

where M(@[x]) = C(ti Ii E H+) and Mo(C[x]) = @(G Ii E N) as explained in Section 3.2. 
The projection is n(ti) = & for i > 0 and n(ta) = 0. The induced coaction is therefore 

j=i 

ALTO = 1 @ to, ALti = C C t;l, ...inj Qtj, 
j=l nl+...+n,=i 

where all indices shown are in N. Note that although the coproduct of M(C[x]) involves 
formal powerseries, its product structure and the induced coaction are algebraic. Since 
M(C[x]) and Mo(C[x]) are free algebras, the fixed point subalgebra is C[to]. 

To go further, one needs to have versions of M, Ma which are actually Hopf algebras and 
not merely bialgebras. This can typically be done by localizing, i.e. by adjoining suitable 
inverses or powerseries. For example, we may take the same M as for the two-point set 
but in the form of the comeasuring bialgebra for C[x]/x* = 1 given by (14) in Section 3.3 
(generated by 1, b, t). For the splitting associated with this basis we have MO = @[?I/? = 1 
which is actually a Hopf algebra. The map JC is rr (b) = 0 and n (t) = ?. The induced coaction 
is 

ALb=l@b, ALt = i@ t. 

Since t2 = 1 - b2 in M, every element of that can be written in the form f(b) + tg(b), of 
which the fixed elements are those with g = 0. Therefore the fixed subalgebra A, the base 
of the bundle, is 

MM0 = @[b]. 

Note that the base is no longer the original algebra of which we took the ‘diffeomorphisms’. 
(This is attributable to the nontrivial cij” in Proposition 2.3 for this basis). On the other 
hand, if we allow formal powerseries in b2 then M has an antipode and, moreover, the non- 
degeneracy (Hopf-Galois) condition holds so that we have, at least formally, a homogeneous 
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quantum principal bundle. The canonical form 8 is also formal, for the same reason. Here 
ker E = (f(b) + tg(b) ( f(0) + g(0) = 0) and hence V consists of polynomials in b 
vanishing at 0. Then 

On the other hand, the map Q(t) = t is a coalgebra map splitting of rr and makes this 
localized bundle trivial. It should therefore be viewed only as a local ‘patch’ of a more 
nontrivial bundle without such localization. (This requires, a suitable extension of the theory 
in [5,6].) At least in this patch, a connection w is induced as in [5] by a ‘gauge field’ (Y : 
it40 + L? ’ C[b] such that a( 1) = 0, which in our case means a single element cr = cr (i) E 
C? ’ @[b]. This induces the covariant derivative 

V : R’C[b] -+ Q’C[b] @‘C[b] D’@[b], V db = (b ~3 1 - 1 @ b)a. 

3.6. Preserving nonuniversal differential calculi 

Here we discuss briefly the further restrictions imposed by nonuniversal differential 
calculi. We recall that for any unital algebra A, the universal calculus CJ ’ A is the kernel of 
the product map A ~3 A + A as an A-bimodule, while a general differential calculus is a 
quotient D ’ (A) = D ’ A/N for some sub-bimodule N. The differential is the universal one 
da = a @ 1 - 1 @ a (as above) projected down to G” (A) in the nonuniversal case. It is 
natural to restrict the notion of unital comeasurings to ones that preserve N in the sense 

where /I is extended to the tensor square A ~3 A in the usual way, restricted to L? I A. The 
universal object in this case is a quotient of M(A). It is easy to see that it remains a bialgebra, 
which we denote M (A, C? ’ (A)), the comeasuring bialgebra with nonuniversal calculus. 

Thus, when A = C(X), the sub-bimodules N are classified by subsets of .Z x .Z - diag. 
In [9] the complement of this subset is denoted by E and we write i - j when (i, j) E E, 
and i#j when (i, j) is in the complement in JC x E - diag. Thus, N = {Si @I Sj 1 i#j). To 
describe the comeasuring bialgebra M (C( Z), f.Z? ’ (C(Z))) in this case we use the base-point 
free version of M(C(C)) defined by (17) and (19), and quotient further by the relations 

r’jtk[ = 0 Vi - k, j#l (26) 

as the requirement that N is preserved by Sj H 6i @I rij. Note that in M(@(JC)) we have, 
for i - k and j#l, 

A(T’jtk,) = C ri,rkb @ tajTbl + xTidTkb @ tajtbl, 

u-b a#b 

Hence it is clear that the quotient by relations (26) remains a bialgebra. The case a = b 
does not contribute here in view of j # 1 and (17). 
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When Z is the two-point set, there is (up to equivalence) only one nonuniversal nontrivial 
differential calculus, namely E = {(l, 2)). Then M(@(X), G”(@(Z))) is the quotient of 
the bialgebra (23) and (24) by the additional relation 

(1 - g+)(l - g-) = 0. 

Equivalently, we quotient the comeasuring bialgebra M for C[x]/x2 = 1, given in (14) in 
Section 3.3, by 

t2 = t(1 +b). 

When A = @[xl the natural differential calculi are those bicovariant under the coaddition 
structure, and are labelled by a single parameter h E C (and over a general field, the 
coirreducible calculi correspond to field extensions). The standard commutative differential 
calculus is the one where N is the subbimodule generated by x dx - ( dx)x. This contains 
in particular all elements of the form xi dxj - ( dxj)xi for i, j E Z+. Under coaction (4) 
we have 

X dx - (dx)x t+ C(Xi dXj - (dXj)X’) @ lilj 

ij 

+ C( dXj)X’ @ (titj - tjfi). 

Since the ( d_xj)xi are linearly independent elements of D ’ @[xl for j > 0, the differentiable 
comeasurings M(@[x], sZ’(@[x])) for the standard commutative differential calculi are 
precisely the quotient of M(C[x]) = @(ti ]i E Z+) by the relations of commutativity of the 
generators, i.e. precisely the usual Diff(@[x]). Differential calculi in between the universal 
one and the commutative one therefore lead to quotients in between the free comeasuring 
bialgebra M(C[x]) and the classical commutative one. 

3.7. DifSeomolphisms of the quantum-braided plane 

Until now, we have only considered diffeomorphisms of the line and its quotients. We 
now move on to the plane, which is now nontrivial enough to have a noncommutative q- 
deformed version, the quantum-braided plane @i. This has generators 1, x , y with relations 
yx = qxy, where q # 0 is a parameter. It is infinite-dimensional but, as in Section 3.1, we 
find that Mc(Ci) is algebraic without the need for formal powerseries. 

The computation of the comeasuring bialgebra M(@[x, y]) for the classical plane follows 
just the same steps as in Section 3.1. With the basis {em,n = xm yn 1 m, n E H+} one has the 
structure constants 

and MI (C[x, y]) is generated by 1, tCi9j)(,,,) with relations 

c t(a’b)(i, j)t(c'd)(k,l) = t(m'n)(i, j)+(k,l) 
(a.b)+(c,d)=(m,n) 

(27) 
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and the matrix coalgebra. Similarly, to Section 3.1, we find M(@[x, y]) is generated by 1, 
s(i.j), t(i,j, where i, j E H+ modulo the relations 

c %.b)t(c,d) = c t(o,b)%,d) vi, j E z+. (28) 

(a,b)+(c.d)=(i, j) (a.b)+(c.d)=(i. j) 

Here 

S(i,j) FE t("j)(l,o), t(i,j) E t(i'j)(o.l) (29) 

generate the others by repeated ‘convolution’. Thus, 

t(i. j) 
(k.0) = c S(a,.b,) ” ‘S(uk.bk), 

(01 ,bl )+-h,bk)=(i. j) 

,Ci.j) 
(0.k) = c t(a,.bl) ‘..t(uk.bk) 

tCi.j) 
(k-1) = c 

t(a’b)(k,O)t(c’d)(O.J) 

(n.b)+(c.d)=(i. j) 

for k, 1 > 1. These follow from (27), while (28) is the residual content of (27) after making 
these substitutions. If we consider the s(i,j), t(i,j) as sequences on Z+ x Z+ with convolution 
product s * t(i,j) = &,b)+(c,d)=(i,j) S(a.b)t(c.d)T we can write the residual relations of 
M(@[x, y]) compactly as s * t = t * s. The coalgebra is 

As(i,j) = c t@‘j)(ab) @ S(,.b), At(i,j) = c t(i’j)(a,b) 8 t(,,b), 

(30) 

E(S(i,j)) = AtsX, E(t(i, j)) = S6S{. 
The coaction on C[x, y] is 

XH c X’Yj @ S(i,j)t y H C-Xi+ 63 t(i,j). (31) 
(is j) (i..i) 

The quotient Mo(@[x, y]) has the same form but with the indices in (29)-(31) excluding 
(0,O). In this case t(‘*j) (k,J) = 0 unless i + j > k + 1, so that the coproduct in this case 
is a finite sum. The geometric meaning of Me(C[x, y]) is the diffeomorphisms that fix the 
origin. 

For the quantum-braided plane, we again have a basis {cz~,~ = x”yn 1 m, n E iZ+}, but 
now with the q-deformed structure constants and consequent relations 

c(i. j)(k,l) (m.n) = 6im,ksjn+tqjk, 

(32) c qbct(a’b)(i,j)t(“‘d)(k,l) = qjktcmsn)(ij)+(k,l). 

(a.b)+(c.d)=(m,n) 
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Proposition 3.1. The comeasuring bialgebra M(@i) of the quantum-braidedplane is gen- 
erated by I, s(i,j), t(i,j) for i, j E h+, module the relations 

q c qbcsWItW) 
(a.b)+(c,d)=Ci. j) 

= 
c 4bct(a,b)S(c,d) vi, .i E z+. 

(a,b)+(c,d)=(i, j) 

The coaction is as in (31). The highergenerators and hence the coproduct (30) aregiven by 

,(i,j) 
W) = c sh A) . ’ 

. S(a~,bk)qC%=2(b,+...+b~-,)a~, 
(a~,bl)+,,.+(a,,bk)=(i,j) 

t(iJ) 
KV) = c t(a,.b,) ” . t(ak,bk)qCf=2(bl+...+b~-l)a,) 

(a~.bl)+.,.+(ak,bk)=(i,j) 

t(i9j) 
(k,l) = c qbct(a’b)(k,O)t(c’d)(O,l) 

(a,b)+(c,d)=(i, j) 

fork > 1. 

Proo$ Relations (32) allow one to define the general tCi’j)(k,J) as stated in terms of the 
s(i,j), t(i,j). Putting these back into (32) leaves the residual relations between s, t as shown. 

These are obtained from t:$~+co,Ij = t:r;{i = t[$~+(, oj computed from (32), i.e. they 

reflect commutativity of the addition law on Z+ x H+. To’see that these are all the relations, 

it is useful to define the q-deformed convolution product S $ tqC(i,j) = &&)+(c,d)=(i,j) 

qbCS(Q,b)t(C,d) for Sequences on H+ x H +. One may check that *4 is associative. Then 
#‘j)(k,O) = (s *4 . . . e4 S)(i,j) and t(i’j+O,k) = (t Xq *. . e4 t)(i,j) (k-fold products) and 

tci’j&) = (S *4 . . . *4 S *4 t *4 . . . *4 t)(i,j) (k-fold and Z-fold). Relations (32) then hold 
if t *4 s = qs +4 t, which are the stated relations of M(@i). 0 

The quotient AJo has the same form with the index (0,O) excluded from the expres- 

sions in the proposition. In this case t(i,j) (k,J) = 0 unless i + j 2 k + 1, so that the coproduct 
is a finite sum. The lowest level generators of Mo(Ci) are 

(33) 

and the relations among these are 

dc = qcd, ba = qab, ad - da = q-‘bc - qcb, 

which are just half of the relations of the quantum matrices. Moreover, this is just the lowest 
level content of the relations t *4 s = qs *4 t. 

We may similarly consider comeasuring bialgebras for the fermionic quantum plane Ci”. 
The latter is a four-dimensional algebra generated by 1,8, 0 with relations 60 = -4-l 06 
and o2 = fi2 = 0. It can be viewed geometrically as the natural algebra of exact differentials 
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8 = dx, 19 = dy on the bosonic quantum plane Ci. As basis we take ec = 1, et = 8, 
e2 = 6 and e3 = 86. The only possibly nonzero structure constants are clearly 

coij = s! = cioj, q23 = 1, C2l 
3_ -I 

I - -4 . 

Proposition 3.2. The comeasuring bialgebra M (Ci’“) of the fermionic quantum-braided 
plane is generated by I, bl, b2, a, b, c, d, (Y, /I, modulo the relations 

b; = b; = 0, {bl t b& = 0, 

(bl, a) = {bl, cl = (b2, bl = (b2, d) = 0, 

]bi, blq + ]a, b& = 0, VI, d& + ]c, b& = 0, 

ac - q-‘ca + (b,, (Y} = 0, bd - q-‘db + (b2, /?} = 0, 

ad - da + {bl, & + (a, b2}q = q-‘cb - qbc, 

where ( , } denotes anticommutator and (61, b2}q = blb2 + qbzbl, etc. The full bi, tij 
and hence the coalgebrafrom Proposition 2.3 are given by 

b3 = blb2, 
bib +ab2 
bid + cb2 

(Y t9 ad-q-‘cb+blf?+ob2 ’ 

Proof This is a direct computation from Proposition 2.3. Here Cij” = 0 for i, j # 0, so 
that clz3b3 = blb2 and c213b3 = b2bl tell us b3 and that blb2 = -qbzbl, etc. ??

We see that the translation generators bl, b2 themselves form a fermionic quantum plane 
Ci12. Setting them to zero gives Mo(@~‘~) as generated by 

modulo the relations 

ca = qac, db = qbd, ad - da = q-‘cb - qbc 

and no relations involving 01, /I, which are free. Note that these are the ‘other half’ of the 
standard 2 x 2 quantum matrix generators (in contrast to the lowest level of MO&~) given 
above), a situation somewhat similar to [7]. In our case it means that one may identify the 
standard quantum matrices geometrically as the lowest level of the diffeomorphisms that 
preserve the entire exterior algebra on Cz. 

3.8. Preserving a coaddition 

We are now ready to consider the general theory of restricting diffeomorphisms to those 
preserving a coalgebra structure. In our ‘coordinate ring’ setting it means a quotient of 
A41 (A), which we denote Ml (A, A). Thus, a coalgebra structure on A corresponds in a 
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basis {ei) to structure constants defined by Aei = dijkej @ ek. Along the same lines as in 
Section 2, the comeasurings that preserve this clearly means the quotient of MI (A) by the 
additional relation 

d,.ikrai = diabtjatkb (34) 

As explained below (Proposition 2.2), one has a bialgebra for any dijk, i.e. one does not 
need A to be coassociative or to make A into a bialgebra. The coassociativity is, however, 
natural to assume. 

We also have quotients M(A, A), Mo(A, A), etc., as before. And in principle, we have 
still further quotients where a counit E is respected as well. However, the counit in the case 
of a bialgebra A defines a natural splitting A = 1 $ A’, where A’ = ker t, i.e. it is natural 
to choose the basis SO that ~(1) = 1 and E(Q) = 0 for i > 0. At least in this case, the 

bialgebra Mo(A, A) automatically preserves the counit without further quotients arising 
from that. 

The quantum-braided plane Ci has such a coalgebra structure, expressing the braided 
addition law. This is the braided ‘coaddition’ introduced in [IO]. Explicitly, it is given by 

A+(XrnY”) = E 2 [ gq* [ :I, xrys 8 Fry"-sq+r)s, 

where we use the q2-binomial coefficients defined as usual, but in terms of q2-factorials 

[n],z ! = [rllq2 . . . [ll,z, 
1 -q2m 

[r?$z = ~ 
I-q2’ 

Although this coproduct forms a coalgebra (it is coassociative), it does not make Ci into 
a usual bialgebra or Hopf algebra, but rather into a braided group [ 111. We will say more 
about this in Section 4; for the present purposes we need only to know its explicit form as 
stated here. For our above basis, we have 

F’roposition 3.3. The quotient of the restricted comeasuring bialgebra Mo(@i) respecting 

the braided coaddition on @$ for generic q. can be ident$ed with the standard 2 x 2 
quantum matrices M4 (2). 

Proo$ The additional quotient of Mo(@~) is by the relation 

(a,b)+g=(m,n) [ :lq2 [ Lqq2 qbct(‘,j)(a,b)t(k,l)(c.d) 
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For generic q we can define new generators 

and then the additional relations become 

(u.h)+(c.d)=(m.n) 

which, by similar reasoning as for the comeasuring bialgebra, implies that the generators can 
be obtained by convolution from the generators 0ci.j) = t(“‘)(,.j, and t(i,j) = t(‘,‘)(i,,j). 
This time 

*(k’o)(i, j )  =  c ‘TeJl.hl) . * 
(ul.bl)+...(ak,bk)=(i,j) 

$k) _ (1-J) - c T(a,,b,) . . . %Jk&)q 
~;&+-+L, b, 

(01 hl)+-h.bk)=(i. j) 

tW.O _ 
(J,J) - c qbct(k,O)(a,b)~(O,l)(c.d) 

(a.b)+(c,d)=(i, j) 

for k, 1 ) 1. The residual relations are 

b.h)+(c.d)=(i, j) 

= 
c qbcqa,bsqc,d), Vi, j E z+ 

(a.b)+(c.dk(i, j) 

or, in the convolution notation, t eq u = qa *q t . This is the bialgebra respecting only the 
coalgebra A+ (indeed, the quantum-braided plane is self-dual as a braided group and this 
is why the algebra has the same form as the comeasuring bialgebra). 

These convolution formulae imply that t kj) (k,J) = 0 unless i + j 5 k + I. Combined 

with the reverse inequality for Mo(@t), we see that t(iqj)(k,[) = 0 in Mo(Ci, A+) unless 

i + j = k + 1. It follows that Mc(@% , A+) is generated by 1 and the lowest level generators 

(33). Half their relations are given above, inherited from Mo(Ci). The other half come from 
the relations t *q o = qa *q 5, which are computed similarly as 

db = qbd, ca = qac, ad -da = q-‘cb - qbc. 

Thus, Mo(Ci, A+) = Mq (2), the standard 2 x 2 quantum matrices in the conventions of [8]. 

The coaction reduces to the standard coaction on Cz. 0 

4. R-matrix constructions for comeasuring bialgebras 

In this section we consider some general constructions possible when our algebra is 
braided, i.e. in the presence of a Yang-Baxter operator. As a first application, we note that 
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until now we have studied the maximal comeasuring objects in the category of bialgebras. 
Since they are maximal they tend to be free, with only the minimal relations compatible 
with coacting on our algebra. However, when the algebra is itself braided, we can look for 
objects maximal in some braided-commutative sense. We then give more functorial braided 
group versions of these constructions, related by transmutation. 

We recall that an algebra A is braided if it comes with an operator P : A @I A -+ A @ A 
obeying the braid relations and functorial with respect to the product of A in the sense 

!P(ab 8 c) = (id 8 .)(w 8 id)(id 8 w)(a 8 b C~J c), 
(35) 

for all a, b, c E A. More generally, a braided algebra means A an object in a braided category 
(such as that generated by a single braiding operator) with the product a morphism. We 
recall that in a braided category there is a braiding between any two objects playing the role 
of ‘transposition’. Also, the (co)modules of any (dual) quasitriangular bialgebra or Hopf 
algebra (i.e., of any ‘strict’ quantum group) form a braided category, so any algebra covariant 
under a strict quantum group is a braided algebra. See [8] or papers such as [ 11,121 where 
braided algebras and groups have been introduced. In this setting we introduce Ml (R, A) 
as again a dual quasitriangular bialgebra or ‘strict’ quantum group. 

Thus, when A has a basis (ei}, a braided algebra translates into the existence of a matrix 
R E M,, 63 M, (where M,, denotes n x n-matrices and n = dim(A)) obeying the Quantum 
Yang-Baxter Equations (QYBE) R12 R13 R23 = R23 R13 R12 (a so-called R-matrix), such 
that 

c1z3R,4R24 = R34C123, R12C3d2 = C3‘t2R,dh3. (36) 

We use the standard compact notation where R12 = R 63 id and we suppose that R is 
invertible. In explicit component terms, the requirement is 

(37) 

where 

‘&((ei @ ej) = eb @ eoRaibj. 

4.1. Dual quasi-triangular comeasuring bialgebras 

We also recall that a bialgebra M is dual quasi-triangular or R-commutative if there 
exists R : M @I M + k such that 

W& c) = Wa, ql)YWb, c(2)), 

R@, bc) = Wql), cVWq2), b), 

b(l)ql)Wq2), b(2)) = Wql), b(l))q2)b(2) 
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for all a, b, c E M. The axioms are dual to the quasi-triangular structures introduced for the 
quantum groups U,(g) by Drinfeld [ 131. On the other hand, given any R-matrix there is a 
dual quasi-triangular bialgebra A(R) of ‘quantum matrices’ with generators Rt 1 t2 = t:! t 1 R 
(in a compact notation where tl = t 18 id, etc.). These are the FRT relations [14] while 
the dual quasi-triangularity for general R is due to the author [15] and takes the form 
‘R(t’,i, tk,) = R’jkl. See [8]. 

Proposition 4.1. If A is a braided algebra with braiding defined by an R-matrix, then 
Ml (R, A) de$ned by the matrix coalgebra and the relations 

RitiJ&tbl = tibti,Ra&, cij 
ak _ 
t? (1 - Cabktaitbj 

is a dual quasi-triangular bialgebra. 

ProoJ We check that this quotient of A(R), in which the relations of Proposition 2.2 are 
further imposed, inherits the linear functional R. If so then it will remain a dual quasi- 
triangular structure for the quotient. Thus, 

R(t’j, cabkta,,tb,) = Ricb,RCjamcabk = c,naRijk, = R(t’j, c,,‘tku), 

bc 
%?(Cabktaitbj, tm,) =c$RaimcR j n = I,, c.“‘Rkam, = R(cijatk,, t”n) 

using the covariance conditions (37). The proof for tij and P,, replaced by general strings 
of generators has just the same form, with repeated use of the covariance conditions; the 
general proof thereby proceeds by a straightforward induction. 0 

While this quotient will always be dual quasi-triangular, it may also be trivial, 
i.e. the ideal generated by both sets of relations may be too large. Although not 
necessary, if A is itself ‘braided commutative’ in some sense then one may expect that 
the above construction is more natural. The appropriate form of commutativity is, as for 
braided matrices and braided planes [10,12], the existence of a matrix R’ E M,, @ M, 
obeying 

R;,Rr3Rz = RzR~~R;~, RtzRtsR& = R;3Rr3Rr2. (38) 

More precisely, these matrix conditions follow from and are essentially equivalent to the 
algebraic condition R’tr t2 = t2tl R’ in the quantum matrix algebra. Typically, R’ is built 
from R and the relations with R’ are equivalent to the defining relations with R. With respect 
to this, braided-commutativity is 

Cij 
k 

= Cbak Rfnibj. 

Note that the more naive definition of braided commutativity would be . o P (a 63 b) = ab 
for all a, b, but this is only natural when ly 2 = id. It corresponds to the choice R’ = R, 
which is too restrictive to apply in most examples of q-deformation. Then 



118 S. Majid/Joumal of Geometry and Physics 28 (1998) 94-128 

cbak(tbjtaiR” ‘,,,j,,) =cbakRfaibjtimtjn = cijktimtj, = cmnatk, 

= CjiatkaRfi mjn = ccb ktb.f.)Rfi j 
a J 1 mn 

holds automatically in A41 (R, A). 
As before, there are quotients M( R, A) and Mo(R, A) when @ respects eu = 1. The 

natural condition is @(a @ 1) = 1 @u and P(1 %I a) = a @I 1 for all a E A. 
As a finite-dimensional example, it is shown in [4] that the commutative quotient of the 

comeasuring bialgebra MO for the quaternions recovers the coordinate algebra of SO3. All 
the ingredients here q-deform, i.e. it is clear that one may recover Mo(R, E-U,) = SO,(3) 
in the similar way, where R is an extension of the so3 type R-matrix and the q-quaternions 
are built from the known S0,(3)-covariant q-epsilon tensor and q-metric. Details will be 
presented elsewhere. 

For the simplest ‘geometrical’ example, namely A = @[xl, we have more than one way 
to consider it as a braided algebra. The simplest is as the braided line [ 10,161 where 

p(Xi 8 Xj) = qi_i,j aXi, Rijkl = 8ijakrqik_ (40) 

Then M(R, @[xl) = Diff(C[x]) is the classical commutative diffeomorphism group. Here 
q cancels from both sides and the result is the same as for q = 1, i.e. the imposition of 
commutativity between all the generators. 

A different braiding on A = C[x] is the one introduced in [16], 

qj(i-k)(l _ q)k 

X 
1-j + k - llq ! x j+k ~ xi-k 

Li - II,! 
Vi,jEN (41) 

and the trivial transposition when i or j = 0. This is the canonical ‘double’ braiding 
associated to any braided group, in this case the braided line. The algebra of the braided 
group is automatically a braided algebra under its canonical braiding. From another point 
of view, the double bosonisation of a braided group canonically acts on the braided group. 
Here the double bosonisation of the braided line is lJq (su2) and acts as a q-deformation of 
so(2, 1) by ‘conformal transformation’ on C[x] [ 171. The above braiding is the one induced 
from the quasi-triangular structure of Uq((su2) by this action. We therefore call this the 
‘conformally braided’ line. 

Proposition 4.2. The restricteddual-quasi-triangularcomeusuring biulgebra Mo(R, C[x]) 
of the conformally braided line is generated by 1, ti for i E N with the relations 

j-l 

qtjti = C 
Ii + klq![j - I],! 

k=O [j - k - ll&lq WI4 !’ 
i(j-k)(l - q)kti+ktj_k 

and the coulgebra (5) US in Section 3.1. The dual quasi-triangular structure is R(ti , tj) = 

qs; 6:‘. 
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Proo$ The R-matrix corresponding to (41) is 

R’oJ~ = g’,g’,, Rijko = Gijsko, 

R’jk, = 6;:; j ‘[ 1 j-i y 

for j, k E N and i 5 j in the third expression (which is zero otherwise), which implies 
that R’I ‘1 = qSp$’ when a, b E N. Hence the Rti t2 = t2tl R relations on the generators 
ti s ti 1 have the form 

c R’aJ,tatb = qtjti, 
l2.h 

which then computes as stated. The R-matrix also provides the dual-quasi-triangular struc- 
ture on the generators. 0 

In particular, the relations of the lowest order generators with the general generators are 

tlti =qi-‘tit,, tzti = q2i-1tit2 +(l - qi+')qi-'ti+]tl, 

t3ti =q 3i-'tit3 + (1 - qi+‘)(l + q)q2’-‘ti+it2 

+ (1 - qi+2)(1 - qi+‘)qi-‘ti+2tl 

for all i E N etc. From this, for generic q, one obtains explicitly 

t1t2 = qt2t1, t1t3 = q%3t, = q(t#, 

t2t3 = qt3t2 = q$,, Ah = II C3 TV, At2 = 12 8 TV + (td2 @ t2, 

At, = t3 @ TV + (1 + q)tztl @ 12 + W3 8 t3 

and so on, to all orders. The comeasuring bialgebra M(R, @[xl) is similar, with the extra 
generator to. The coproduct in this case involves infinite sums, so has to be treated formally. 

For anyonic variables x 3 = 0, we again have a braided group (the anyonic line), and 
hence a canonical ‘double’ braiding. Here q3 = 1 and the resulting 9 x 9 R-matrix in this 
case is given in [ 16, Ex. 4.81 as 

R= 

‘1000 0 00 0 0 
0100 0 00 0 0 
OOlOl-qoo 0 0 
0001 0 00 0 0 
0000 q 00 0 0 

0 0 0 0 0 q2 0 q-l 0 

0000 0 01 0 0 
0000 0 00 q? 0 

,oooo 0 00 0 q 

as an endomorphism in basis 1 @ 1, 1 @I x, 1 8 x2, x C?J 1, . . . , x2 63 x2. The comeasuring 
‘diffeomorphism’ bialgebra M(R, C[.x]/x3) in this case is given by generators 1, h. s, t 
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with the coalgebra (11) in Section 3.2, but now with the relations and dual-quasitriangular 
structure 

b3 = 0, tb = qbt, sb = qbs, ts = qst, 

R(b, s) = 1 - q, Wt, t) = q, 

and R(b, b) = R(b, t) = R(t, b) = R(t, s) = R(s, b) = R(s, t) = R(s, s) = 0. 
The variable b implements translation of the anyonic line, and we see that it is itself an 
anyonic variable. The quotient Mo(R, C[x]/x3) is given by setting b = 0 and yields a 
dual-quasitriangular bialgebra with relations ts = qs t and the coalgebra structure (12) in 
Section 3.2. 

Finally, we let A = Ci be the quantum-braided plane with generators X, y and relations 
yx = qxy, as in Section 3.7. This has a natural braiding P used to describe coaddition 
on the quantum plane [lo], as studied in Section 3.8. The quantum-braided plane is also 
braided commutative with respect to a certain matrix R’. Explicitly, 

~(X@X)=q2x@lx, @(Y 63 Y) = q2Y @ Y, 

~(x@y)=qy@~, ~(y@x)=qx@y+(q2-1)yCG.X (42) 

extended to products by functoriality. This is the braiding induced by the action of U, (Su2) 
on the quantum-braided plane and is usually given by an array of su2-type R-matrices, 
see [&lo]. 

Proposition 4.3. The dual-quasi-triangular comeasuring bialgebra M(R, @i) is gener- 
ated by 1, s(i,j), t(i,j), i, j E Z+ with the relations in Proposition 3.1 and the additional 
relations 

R(‘,j) (a,lJkV’) (c,d)s(o,b)s(c,d) = C12S(k,l)S(i, j), 

R(ivj)(a,b)(k.l) 
(c,d)t(a,b)t(c,d) = q2t(k,L)t(i, j), 

R(i’j)(,,b) (kJ) 
(c,d)s(a,b)t(c,d) = qt(k,l)s(i, j) 9 

R(i’+,,bj (k”)(c,d)t(,,b)s(c,d) = qs(k.l)t(i,j) + (Cl2 - l)t(k,l)S(i,j), 

where R corresponds to the braiding W on C$. Summation over a, b, c, d E Z+ should be 
understood. 

Proof. We already know M(@i) from Section 3.7, and now quotient this further by the 
Rtl t2 = t2fl R relations. On the other hand, the braiding on the generators (42) immediately 
gives R(a~b)(l,o)(c~d) (1,~)) = 8f$6y6,dq2 corresponding to ~(x@Ix) = q2n@x, etc. Thus the 
additional relations on the generators S(i,j), t(i,j) reduce to the four sets as shown. They can 
be stated more compactly as the relations of a rectangular [ 181 quantum matrix A (R : R,,, ), 

where Rsuq is the standard suz-type R-matrix. 0 

The relations of M(R, 42:) may be further expressed in terms of R,,, or, alternatively, 
defined by induction. If xi = (x, y) is an SU, (2)-covariant covector notation then 

Xi 1 xi* . . . xi, = q p(il,.,.,i,)x#(il,....i,) n-#(il.....&) 
Y 
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defines E+-valued functions p, # (here #is the number of indices with value 1, and p is the 
number of indices with value 1 to the right of each index with value 2.) Then 

R(a+.I(c.d+k 1) 

where there are i indices 1 . . . , j indices 2. . ., followed by k indices 1 . . ., and 1 indices 
2. . ., and where 2 is the ‘partition function’ array of copies of R,,, corresponding to ly in 
the braided covector description of the quantum-braided plane (see [8, Theorem 10.2.11). 
Alternatively, the general p in our basis e(i.j) = x’yj may be obtained by induction, via 
the formulae 

W(y’ @I xj) = xW(y' 63 xj-l)q’ 

+(q2 - l)[ilq2q X-l)yp(yi-l 8 xj-l)x 

and 

These expressions follow from the functoriality (35) of the braiding. 

Corollary 4.4. There is a bialgebra surjection MO (R, C) + I& (2) and A& (2) appears 
as a subalgebra (33) covered by this surjection. The dual-quasi-triangular structure of 
Mo(R, C) extends that of&(2). 

Proo$ Since @ preserves the total degree, the only way to obtain a nonzero coefficient of 
x@x,x@yy,y@xory@yin9(x’yj@xky’)iswithi+j = 1 =k+/.Hencetocompute 
Rc’~o’(i,j,‘l.o’(~,~) etc., we need only to consider (42). Writing 1 E (1,0) and 2 = (0, l), 
the only nonzero entries of this form are given by the standard Rsu2. Thus, the lowest level 
generators s(t.0) , s(o,~) obey the relations of the quantum-plane in R-matrix form, i.e. ca = 
qac in the notation (33). Similarly, t(l,o), t(o,l) form a quantum-braided plane, i.e. db = 
q bd. These relations already hold in MO (Ci ) . The third relation in Proposition 4.3 similarly 

reduces to the four relations ba = qab, dc = qcd, cb = bc and ad - da = (q-’ - q)bc, 
while the fourth is then redundant. Hence the relations among these lowest level generators 
of MO (R , Ci) are precisely the relations of the 2 x 2 quantum matrices Mq (2). 0 

The geometric meaning of this is as follows. The surjection corresponds classically to 
the inclusion of 2 x 2 linear transformations among the algebraic diffeomorphisms of the 
plane. The inclusion of M4 (2) corresponds classically to the projection which associates to 
a diffeomorphism fixing zero its differential at zero, i.e. the linear transformation induced 
on the tangent space at zero. 

Similah-y, there is a surjection from M(R, Ci) to the q-deformed Weyl algebra 

Cg x Mg(2) cf. [8] and an inclusion of it. One replaces the dilaton-extended SU,(2), 
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i.e. GL,(2), in the bosonisation construction Ci >Q GL,(2) from [&lo] by the quantum 

matrices M4 (2). Conversely, at least these quotients of M (R , Ci) become Hopf algebras by 
adjoining the inverse of the q-determinant. Moreover, our constructions are quite general 
and can be applied similarly to quantum-braided planes associated to other R-matrices than 

R su?j. 
Finally, we have a similar situation for fermionic quantum planes Ci’“. The natural 

braiding is [8] 

W(e @ 0) = -8 @ 8, W(79 @ l9) = -l9 @ 6, W(0 @ 6) = -q-49 63 8, 

U(r9 80) = -q-b C+ I9 + (q-2 - l)b @ 8, 

which extends to 

*(es 8 0) = q-‘8 64 86, pu(es 8 s) = q-16 63 86, 

~(e B es) = q-l829 c3 8, ~(79 c3 es) = q-1e6 63 29, 

*(efi 60 es) = q-2e6 c3 86. 

In the basis used in Proposition 3.2, the corresponding R-matrix is 

R= 

-1 0 0 0 00000 
0 -q-’ 0 q-2-1 0 0 0 0 0 
0 0 q-1 0 0 0 0 0 0 
0 0 0 -4-l 0 0 0 0 0 
0 0 0 0 -1 0 0 0 0 
0 0 0 0 0 q-1 0 0 0 
0 0 0 0 0 q-1 0 0 0 
0 0 0 0 0 0 0 q-1 0 
0 0 0 0 000 q-2 0 

for all indices in the range 1,2,3. From this one may compute, in particular, that 

in Mo(@~‘~) (see below Proposition 3.2) now form a quantum matrix. The remaining gener- 

ators (11, /? form a fermionic quantum plane, and Mo( R, Ci”) consists in this way of M4 (2) 

and @‘I2 4 , with the zero product between their nontrivial generators. 

4.2. Braided comeasuring bialgebras 

Finally, we give braided versions of all our comeasuring constructions. From a categorical 
point of view we can fix any braided category in which our algebra lives and look for the 
universal comeasuring object in this braided category. The result will now be a braided 
group [ 121 or bialgebra in the braided category. 
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For the abstract aspect of these constructions, we use the diagrammatic notation for 
‘braided algebra’ (due to the author) in which we write products etc. as nodes e = L,J and ‘wire 
up’ our algebraic operation using q = X, 9-l = % as necessary. Note that the use of ‘flow 
charts’ to express algebraic or other operations is nothing new - it is use routinely by 
physicists as Feynman diagrams and by engineers as wiring diagrams, the new feature in 
braided mathematics [ 11,191 is to adapt the notation to algebraic constructions in braided 
categories, where under and over crossings are nontrivial and distinct operators. We use 
here the coherence theorem for braided categories [20]. 

In particular, using the braiding, one has a braided tensor product algebra A~JB for A, B 
algebras in the category. In a concrete setting it is (a ~3 b) (c ~3 d) = a W (b @ c)d, but more 
generally it is defined diagrammatically, see [S]. We define a comeasuring of A as a pair 
(B, /?) where /3 : A -+ ASB is a morphism and an algebra map. 

Proposition 4.5. If A is an algebra in a braided category, the universal comeasuring object 
Ml (A) is a braided group (a bialgebra in the braided category). 

Proot This is shown in Fig. 1. In part (a) we write the definition of comeasuring in dia- 
grammatic form. In part (b) we check that comeasurings are closed under tensor product. 
The lower box is the braided tensor product algebra BBB. Hence if (M, Bu) is the universal 
object, then (i%J 63 M, (Bu 63 id)pu) also comeasures, hence there is an induced algebra 
map A : M + M@M. Part (c) checks that it is coassociative. 0 

As before, we have quotients M(A) and &,(A) (the latter when 1 is split). We have 
explicit formulae in the R-matrix case. For convenience we assume that R is bi-invertible in 
the sense that 1? = ((R’z)-‘)‘2 exists, where t2 denotes transposition in the second matrix 
factor. 

AMMM AMMMAMMM AMMMAMMM 

Fig. 1. (a) Corneasming property of (B, p) (b) proof that B@JB, (fi @I id)#J is another comeasuring; (c) Proof 
that A is coassociative. 
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Proposition 4.6. If A is ajinite-dimensional braided algebra with braiding determined by 
a biinvertible R-matrix, then the universal comeasuring braided group has the explicit form 

M, (R, A) with generators 1 and uij and the relations, coalgebra and braiding 

k -lab 
CijnUk, = Cab R c duCeReidfufj 

Au’j = Uiq @ Uaj, E(U’j) = 6'j, 

'P'(U'j @ Ukt) = Umn 8 u’,~RiadmR-‘arnbRScbERcjkd. 

The braided coaction and the braiding with A is 

bu(ej) = e, C3 Uaj, ‘P(U’j @ ek) = e, 8 UabR-‘iqmnRbjnk, 

p((ek @ Uij) = Uab @ emRnkiaRmnbj. 

In compact form, the bialgebra structure is 

WC,~~ = c,z~R,~‘wR,zw, Au=u@u, eu=id, 

P(R;;h 63 R12u2) = UZR;’ 63 UI R12. 

ProoJ That we obtain here a bialgebra follows from the preceding proposition once we 
have established the universal property. Before doing this we first outline, for completeness, 
the direct algebraic proof. For this, we have to check that the coproduct extends as an algebra 
map to the braided tensor product with the stated braiding W. Thus, 

A(CabkR-‘acbdUCeRetdfUfj) 

= CqbkR-lacbdReidf(uCp 8 UPe)(Ufq @ U’j) 

= C,bkR-lacbdReidfUCpum, @ u’,UqjRP,“~R-‘U,n~RSwVq~Wefz 

= CabkR-‘ucbdUCpRPud,Um~ @ u’,~uqjR-‘“rnvRsiUq 

=Cun 
a k 

u a @ Ur,~R-lUrnvUqjRStVq 

= cijaUkb @ Uba = Acijaukq. 

Or in the compact notation, this proof reads 

~w~RI_:wRI~w) = ~12~R;-:(w @w)R12(~269u2) 

= ~,2~R+WbuR12 @u2)u2 

= c,~~RI_~'u, R,2w 63 R+I R,~uz 

= U3c123 @ R~'u,R,2u2 

= U3 @U3C123 = AU3c12~. 
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We also have to check that P is itself well-defined when extended to products by func- 
toriality (i.e. such that A4, (R, A) is a braided algebra). Here a direct proof is too complex 
to write out in explicit terms and we give it only with the compact notation. Thus, 

w’(u1R12 8 ~34~R34-‘~3R34~4) 

= ~(UI @ ~34~Rl4Rl3R$3R34~4) 

= ~342R;4’W1 @ Rl3R14~3R34w) 

= ~34~R~‘R,3~3R13’~(ulR,3 @ R14R34~4) 

= ~34~R,-6R,3~3R13’R341y(u, 8 R14u4)R13 

= ~34~ Rq4’ R,3u3 RT3’ RMR,wRI_~’ 6x1 UI R14Rn 

= c~~~R,‘R,~R,~u~R~~R~‘u~R~’ @uulR14R13 
2 -I -I -I 

= ~34 R14R13Rg4 u3R34wR13 R,, 8 ul R14R13 

= R,2c342R34’~3R34~R13’R14’ @ UIRI~RI~ 

= &2~2~34~R;;‘R;’ 8 UI R14R13 

= Rl2~2 @ R,‘~34~wR,4R,3 

= R12u2 8 R;‘u, R12C342 = *@I R12 ‘8 u2c342) 

using repeatedly the QYBE and one of the two covariance conditions (36). On the other 
side, we have 

‘%z3RI_:ntR,2u2 CXJ R14R24n4) 

= c,23R,21Vu,R~2R,4u2 ‘8 R24u) 

= ~,2~R1~‘~(u,R,2R,4R24 8 ~4W;~‘u2R24 

= ~,2~R,‘R24WwR,4 @ ~4)R,2R;~‘u2R24 

= c,z3R,‘R24R14~R;-b ~8 wR14R,2R;~hR24 

= ~12~Rl4R24R;;‘wR~~ @ R$,Rl2Rl4~2R24 

= R34~4c,2~ R;R;k’R;’ C3 ul RuR14wh 

= RMWC,~~R~‘R~‘R~’ ~3 UI RnR14mR24 

= R34~4R;zcn~R;; @J UIR~RMWRBI 

= RMU~R;~’ @J udR~Rm 

= RMwR;~’ ‘8 U3R34C123 

= p(u3R34 @ u4c123> = @(u3c123 ‘8 R14R24~4) 

using the QYBE and the other half of (36). The proof for higher products is similar and the 
general case follows by induction. 
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Fig. 2. Construction of braidings B @ A -+ A ~3 B and hence B ~3 B + B ~3 B. 

Finally, we verify the universal property. Thus, if B is a braided comeasuring on A, we 
define n(z&j) E B as #I(ej) = e, @n(U”j). That this is a morphism implies that the braiding 
with A may be computed before or after applying /I. This is shown in Fig. 2. Thus 

e,~~(*(~ai)~ej)=~y-‘(eb~e,)~~c,Rnibj 

= e, @ e, R-lmCnt, @ uc, R”ibj 

which tells us that the braiding G : B @ A + A 8 B is compatible via TT with the braiding 
of A4( R, A) with A. The braiding with A on the other side similarly gives compatibility of 
iP : A 8 B +- B @ A. Once these are known then the braiding of A with n(u jk) E B 
before and after #I yields compatibility with @ : B @J B + B @ B. This is shown on the 

right in Fig. 2. In this way, the braiding on n(u’j) has the same form as the braiding on Uij. 
Next, the assumption that fi is an algebra map to ABB translates as 

= (e, @ n(uai))(eb ‘8 n(ubj)) = eaec 63 ~t(u~,)R -ladcfReifdTT(ubj). 

Thus uij H T(u’j) extends as an algebra map n : M(R, A) + B and a morphism in the 
braided category. 0 

Finally, we recall that the quantum matrices A(R) above have a braided group ver- 
sion B(R) [12] defined by a matrix of generators u = (U’j) and relations R21ur Ru2 = 
u2 R2lui R, forming a braided group with the above matrix coalgebra and braiding. The 
algebra relations here are known in other contexts too [ 141 and sometimes called ‘reflection 
equations’, although they have been first introduced and studied as quadratic algebras by 
the author under the heading of the braided matrix relations. Key properties such as its co- 
variance properties (as a braided algebra), the braided coproduct, results about the Poincare 
series, etc. were introduced in [ 121. 

On the other hand, the quantum and braided matrices are closely tied by a theory of 
transmutation which relates their products, e.g. 

t = u, R12tt t2 = ut Ru2. (43) 

See [8,19] for an introduction to this transmutation theory of braided groups. 

Corollary 4.7. The transmutation of iI41 (R, A) is the braided comeasuring bialgebra 
M, (R, A) generatedby I andu’j with the braidedmatrixrelations R2tut RUG = u2R2tut R 
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and thefurther relations uy~12~ = ~12~ R,‘ul R,~uz andcoalgebra of IV, (A) from thepre- 
ceding proposition. 

ProofI This is immediate from (43) applied to the relations t3c123 = c1z3t, t2 of M(R, A). 
0 

One may then proceed to apply the extensive theory of braided groups to &(A), 
i& (R, A) and their unital quotients. For example, associated to any braided group in the 
category of comodules of a quantum group H (which is essentially the situation above, with 
H obtained from A(R)), one has ordinary bialgebras M, (A) x H, etc., by the bosonisation 
construction. 

As a simple example, we consider @[xl as a braided algebra with R-matrix (40). In this 
case the relations from Proposition 4.6 are 

U k 
i+j = 

c 
uQbjq(w~ 

afb=k 

Hence&f(C[x]) = C(ui Ii E Z+) is the free algebraas in Section 3.1, but the other generators 
(and hence the matrix coalgebra) are given from these by 

r,Jj = 
c ua, . . “Uj9 

-(i-al)-CI,2(“,+...4,~,-‘)cr,, 

al+..,+a,=i 

which is a q-deformation of (5) as a braided group. The braiding is 

~(Ui @ Uj) = uj @ uiq(i-l)(j-l). 

Similarly, the braided-commutativity in Corollary 4.7 in this simplest example reduces to 
the usual commutativity relations. For example, &(R, C[x]) = @[ui Ii E N] is the same 
algebra as Diffu(@[x]) in the classical case, but the coalgebra is q-deformed and provides 
a nontrivial braided group structure on this algebra. 
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